Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design
نویسندگان
چکیده
منابع مشابه
Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design
We describe an elementary algorithm to build convex inner approximations of nonconvex sets. Both input and output sets are basic semialgebraic sets given as lists of defining multivariate polynomials. Even though no optimality guarantees can be given (e.g. in terms of volume maximization for bounded sets), the algorithm is designed to preserve convex boundaries as much as possible, while removi...
متن کاملMatrix Convex Hulls of Free Semialgebraic Sets
This article resides in the realm of the noncommutative (free) analog of real algebraic geometry – the study of polynomial inequalities and equations over the real numbers – with a focus on matrix convex sets C and their projections Ĉ. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which s...
متن کاملSimple Approximations of Semialgebraic Sets and their Applications to Control
Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even n...
متن کاملAnalysis of the Convergence Rate for the Cyclic Projection Algorithm Applied to Basic Semialgebraic Convex Sets
In this paper, we study the rate of convergence of the cyclic projection algorithm applied to finitely many basic semi-algebraic convex sets. We establish an explicit convergence rate estimate which relies on the maximum degree of the polynomials that generate the basic semi-algebraic convex sets and the dimension of the underlying space. We achieve our results by exploiting the algebraic struc...
متن کاملUnbounded Convex Semialgebraic Sets as Spectrahedral Shadows
Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the boundary of S is nonsingular and has positive curvature. In this paper, we generalize their result to unbounded sets, and also study the effect of the perspective transform on singularities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Control
سال: 2012
ISSN: 0020-7179,1366-5820
DOI: 10.1080/00207179.2012.675521